INDIAN RUBBER INSTITUTE PGDIRI EXAMINATION – 2018

Paper – I						
Date: 14 th Jul Duration: 3 F		-	Time: 10.00 – 13.00 hrs. Full Marks: 100			
	Po	lymer Science				
Total FIVE	Answers should be illust questions are to be answered from the remaining que	. Question num	ber 1 is compulsory. Answer FOUR			
	!	GROUP – A				
1. Multiple ch	oice questions: Select the co	rrect answer from	m the given alternatives:			
(i)	EPDM is a (a) Homopolymer (c) Terpolymer	(b) Copolyme (d) Fibre	er			
(ii)	LDPE is (a) Highly crystalline (c) Amorphous	(b) Semi - cr (d) None of t				
(iii)	Solubility parameter can be calculated from (a) Crystallinity (b) Cohesive energy density (c) Tacticity (d) Viscosity					
(iv)	Silicone rubber shows its $(a) - 50^{\circ}C$ (c) $- 100^{\circ}C$	Fig at around (b) -70^{0} C (d) 120^{0} C				
(v)			(b) Weight average molecular weight (d) Z-average molecular weight			
(vi)	S-B-S is an example of (a) Block copolymer (c) Graft copolymer	(b) Terpolyr (d) None of				
(vii)	Number of branches is mi (a) LDPE (c) HDPE	ninimum in (b) LLDPE (d) VLDPE				
(viii)	Example of self-reinforcing (a) NR (b) BR	ng rubber is (c) SBR	(d) EPDM			

(ix)	Stereo – regular polymers are (a) Peroxide Catalyst (c) Metal Oxide Catalyst	(b) Ziegler – Natta Catalyst	
(x)	Ring opening polymerization (a) Isoprene (c) Butadiene	n is related to (b) Caprolactam (d) Styrene	
(xi)	Example of an oil resistant ru (a) NR (b) BR	ubber is (c) NBR (d) PDMS	
(xii)	Atactic PP is (a) Highly crystalline (c) Amorphous	(b) Semi-crystalline(d) None of the above	
(xiii)	Dicumyl peroxide is an exam (a) Plasticizer (c) Initiator	nple of (b) Crosslinking agent (d) Peptizer	
(xiv)	The diene present in EPDM (a) ENB (c) Heptadiene	is (b) Butadiene (d) None of the above	
(xv)	Tg can be determined by (a) XRD (b) TGA	(c) DSC (d) SEM	
(xvi)	Toughness can be calculated from (a)Total area under stress-strain curve (b) Hystereris loop (c) Heat flow curve (d) Electrical properties		
(xvii)	Nylon 66 is a (a) Addition polymer (c) Ring opening polymer	(b) Condensation polymer(d) Stereo regular polymer	
(xviii)	Example of a good weather range a) NR (b) BR	resistant rubber is (c) SBR (d) EPDM	
(xix)	Tg of a copolymer can be de (a) Bragg Equation (c) Hildebrand Equation	(b) Fox Equation	
(xx)	Example of a semi-synthetic (a) Cellulose nitrate (c) Butyl rubber	polymer is (b) PF resin (d) Polycarbonate	$(2 \times 20) = 20$

- 2. (a) Define the terms: (i) monomer (ii) functionality and (iii) polymerization
 - (b) Explain the basic difference with examples between addition and condensation polymers.
 - (c) How do you classify polymer based on thermal response? Give examples.
 - (d) Explain with examples the difference between linear polymer, branched polymer and crosslinked polymer.
 - (e) Show stress-strain plots of a fibre, a brittle plastic, a ductile plastic and an elastomer.

(3+4+3+5+5) = 20

- 3. (a) Define the term 'glass transition temperature (Tg)'.
 - (b) Explain briefly the method of determined of Tg of polystyrene by a dilatometer (with a sketch).
 - (c) Explain various factors that control Tg of polymers.
 - (d) What is "strain induced crystallization"? Explain with an example.

(2+6+8+4) = 20

- 4. Distinguish between the following with suitable examples:
 - (a) Number Average and Weight Average Molecular Weight
 - (b) Isotactic and Syndiotactic polymer
 - (c) Random and Alternating Copolymers
 - (d) Cationic and Anionic polymerization
 - (e) Emulsion SBR and Solution SBR

 $4 \times 5 = 20$

GROUP - B

- 5. (a) What are the necessary molecular requirement for rubber-like elasticity?
 - (b) Explain with figures the differences between Maxwell and Voigt Model.
 - (c) Explain the differences between pseudoplastic and dilatant materials.
 - (d) What is the Power law equation and explain its significance.

(4+6+4+6) = 20

- 6. (a) Explain the term 'toughness' with its significance.
 - (b) What is shape factor? Explain its significance.
 - (c) Explain the terms with figures: (i) stress relaxation and (ii) creep.
 - (d) What is die swell?

,

(e) Explain the term with a figure: polymer spherulite

(5+4+4+2+5) = 20

- 7. (a) What are the different techniques of polymerization? Discuss their relative advantages and disadvantages.
 - (b) How do you control the degree of polymerization?
 - (c) What is the function of an initiator? Give two examples.

(12+6+2) = 20

- 8. Write short notes on any four of the following
 - (a) Polydispersity
 - (b) Viscosity average molecular weight
 - (c) Living polymer
 - (d) Carothers' equation
 - (e) Ring opening polymerization
 - (f) Cohesive energy density (CED)

 $(4 \times 5) = 20$